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PROBLEM 4.11

We’re given a 2 meter long, thin-walled beam, fixed at
one end, with section identical to the one from a previous
assignment, Problem 4.4, Section 4.21. The height of
the section is given as, 2 h = 0.4 m, the thickness, t =
2.0×10−3 m, and the cross-sectional area of the stringers,
A′ = 2.5×10−3 m2. We’ll define our coordinate axes with
origin located at the centroid of the beam section at the
fixed end of the beam. Referring back to Problem 4.4 on
the previous assignment, the moments of inertia for the
beam may be written as

Iy = 4 h2 A′ = 4.0 × 10−4 m4, (1)

Iz = h2 A′ = 1.0 × 10−4 m4, (2)

Iyz = 0. (3)

A shear force, Vz = 5000 N, acts on the beam’s free end.
The Temoshenko equations give rise to the following two
definitions,

ψy =
Vz

2 E Iy
x2 +B1 x+B0, (4)

w0 =
Vz
G A

x− Vz
6 E Iy

x3 − B1

2
x2 −B0 x+ C0, (5)

where B1, B0, and C0 are constants of integration and
A = 4 A′ = 1.0 × 10−2 m2 represents the total cross-
sectional area of the beam. Boundary conditions require
the deflection, w0, of the beam at the fixed end to go to
zero, allowing us to write

w0(x = 0) = 0 = C0. (6)

The cross-sectional rotation, ψy, of the beam must also
be zero at the fixed end, giving us

ψy(x = 0) = 0 = B0. (7)

Since the force is applied at the free end, the moment,
My, must be zero there, such that

My(x = 2) =
d2w0

dx2
(x = 2) = 0 = − 2 Vz

E Iy
−B1. (8)

Solving for the constant B1 gives us

B1 = − 2 Vz
E Iy

. (9)

Substituting these constant back into our deflection equa-
tion, we can write

w0 =
Vz
G A

x− Vz
6 E Iy

x3 +
Vz
E Iy

x2. (10)

For a beam composed of aluminum 2024-T3, the shear
modulus is given as, G = 27 GPa, and Young’s modulus
is E = 70 GPa. Substituting in our transverse shear
force, Vz = 5000 N and our moment of inertia, Iy =
4.0 × 10−4 m4 gives us

w0 = (1.85×10−5) x−(2.98×10−5) x3+(1.79×10−4) x2.
(11)

The total deflection experienced by the end of the beam
then is given by

w0(x = 2) = 5.13 × 10−4 m. (12)

PROBLEM 5.3

(a)

FIG. 1: 5.1 : Thin-walled section with side cut showing
flexural shear flow components.

We’re given a thin-walled beam with section as shown
in Figure 1, where h = 0.1 m and t = 2.0 × 10−3 m.
From a previous assignment, Problem 5.1, The shear flow
through the section was calculated for a beam subject to
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a transverse shear force, Vz = 1.0 × 103 N such that

q1 = q6 = −(1.5 × 105) s2,

q2 = q5 = −(1.5 × 103) − (3.0 × 104) s,

q3 = q4 = −(4.5 × 103) − (3.0 × 104) s+ (1.5 × 105) s2.

We can integrate each of these to get the total shear
acting in each section,

V1 = V6 =

∫ h

0

q1 ds = −(0.5 × 105) h3 = −50.0 N,

V2 = V5 = −300.0 N,

V3 = V4 = −550.0 N.

Given these shears, we can determine the location of the
shear center for the cross-section, ysc, through the rela-
tion,

Vz ysc = 2
[
V1 (h/2) + V2 (h) + V3 (h/2)

]
. (13)

Solving for ysc, the horizontal displacement of the shear
center from the centroid (the vertical location being
equivalent to that of the centroid due to symmetry), we
get

ysc = −0.12 m. (14)

(b)

FIG. 2: 5.4 : Open, four-stringer section showing
flexural shear flow components.

We’re given a stringer and web section as shown in
Figure 2. From a previous assignment, Problem 5.4, The
shear flow through the section was calculated for a beam
subject to a transverse shear force, Vz = 5.0×103 N such
that

q1 = −3.33 × 103 N m−1,

q2 = −5.00 × 103 N m−1,

q3 = −3.33 × 103 N m−1. (15)

Given these shear flows, we can determine the location
of the shear center for the cross-section, ysc, through the
relation,

Vz ysc = q1 (2 h) (h/2) +Q2 + q3 (2 h) (h/2), (16)

where Q2 is the component of torque resulting from the
shear flow, q2. From the geometry of the section, we can
write this as

Q2 =

∫ π/2

−π/2
q2

(
r +

4

3
h cos(θ)

)
r dθ,

= q2 r

(
π r +

8

3
h

)
, (17)

where r = h/2 represents the turning radius of the second
web section. In terms of this radius, we can rewrite Q2

as

Q2 = q2 h
2

(
π

4
+

4

3

)
. (18)

Plugging this into Equation 16 and solving for ysc, the
horizontal displacement of the shear center from the cen-
troid (the vertical location once again being equivalent
to that of the centroid due to symmetry), we get

ysc =
h2

Vz

[
q1 + q2

(
π

4
+

4

3

)
+ q3

]
,

= −3.45 h. (19)

PROBLEM 5.5

We’re given a single-cell closed section consisting of
three stringers all of area, A = 0.001 m2, and thin web-
bing of thickness, t = 0.001 m. The moment of inertia
about the y-axis for the system is given by

Iy = (−0.1)2 A+ (0.1)2 A = 2 × 10−5 m4. (20)

If the section is subjected to a shear force, Vz = 5000 N,
then we can determine the total shear flow through the
section by adding the base shear component from torsion
to the shear resulting from a similar section with a small
cut in it. Making a cut between stringers (2) and (3), we
can write the resulting shear flows as

q′21 =
Vz
Iy

((−0.1) A) = −2.5 × 104 N m−1, (21)

q′13 = q′21 +
Vz
Iy

((0.1) A) = 0, (22)

q′32 = 0. (23)

By inspection, Vz acts a distance, y = −0.267 m, from
the centroid, so we can define the torque acting on the
section as

T = Vz(−0.267) = −1.33 × 103 N m. (24)
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The average area enclosed by the section can be deter-
mined to be

A = 0.0957 m2. (25)

The torque acting on the section gives rise to the base
shear flow, q0, such that

T = 2 A q0 (26)

We can therefore solve for q0, giving us

q0 = −6.966 × 103 N m−1. (27)

Adding this to our cut-section shear flows, we get

q21 = q′21 + q0 = −3.197 × 104 N m−1,

q13 = q′13 + q0 = −6.966 × 103 N m−1,

q32 = q′32 + q0 = −6.966 × 103 N m−1.

For a shear modulus of G = 27 GPa, the twist angle per
unit length may be defined as

θ =
1

2 G A

∮
c

q

t
ds,

=
1

2 G A

[∫ π/2

−π/2

−3.197 × 104

1.0 × 10−3
(0.1) dθ

+2

∫ 0.81

0

−6.966 × 103

1.0 × 10−3
ds

]
,

= 4.12 × 10−3 rad = 0.24◦. (28)

We can determine the location of the shear center for the
cross-section, ysc, through the relation,

Vz ysc = Q21 + (q13 + q32) (0.806) (0.0662). (29)

where Q21 is the component of torque resulting from the
shear flow, q21. From the geometry of the section, we can
write this as

Q21 =

∫ π/2

−π/2
q21 (r + 0.267 cos(θ)) r dθ,

= q21 r (π r + 0.533) , (30)

where r = 0.1 m represents the turning radius of the sec-
ond web section. In terms of this radius, we can rewrite
Q21 as

Q21 = −2.709 × 103 N. (31)

Plugging this into Equation 29 and solving for ysc, the
horizontal displacement of the shear center from the cen-
troid (the vertical location once again being equivalent
to that of the centroid due to symmetry), we get

ysc = −0.691 m. (32)

PROBLEM 5.7

We’re given a stringer and web section subject to a
transverse shear force, Vz = 5.0 × 103 N. The section
consists of four stringers of area, A1 = A2 = 1.5×10−3 m
and A3 = A4 = 1.0 × 10−3 m. The y moment of inertia
may be calculated such that

Iy = (0.24)2 A1 + (−0.16)2 (A2 +A3) + (0.04)2 A4,

= 1.52 × 10−4 m4. (33)

Calculating the shear flows through this section gives us

q43 =
Vz
Iy

(0.04 A4) = 1.32 × 103 N m−1,

q32 = −3.95 × 103 N m−1,

q21 = −1.18 × 104 N m−1.

PROBLEM 5.11

FIG. 3: 5.11 : Thin-walled, two-cell section showing
representative side cuts and all flexural shear flow

components.

We’re given the two-cell, two-stringer, closed section
shown in Figure 3, where the height of the section,
h = 0.4 m, the thickness of the connecting webs is t =
0.001 m, and the area of the stringers is A = 0.001 m2.
The shear force, Vz, acts a distance, y = 0.2 m, from the
centroid as shown. The moment of inertia for the section
about the y-axis can be written as

Iy = (h/2)2 A+ (−h/2)2 A,

=
1

2
h2 A = 8.0 × 10−5 m4. (34)
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If we cut each cell on the curved outer wall, then q′1 =
q′2 = 0 and the shear flow, q′12, running up the dividing
web can be written as

q′12 =
Vz
Iy

(
−h

2
A

)
= −2.5 Vz. (35)

The torque arising as a result of the applied shear force
may be defined as

T = 0.2 Vz. (36)

The average area enclosed by each cell is

A =
π

8
h2 = 0.0628 m2. (37)

The applied torque may be defined in terms of the base
shear flows through each section, q01 and q02, as

T = 2 A q01 + 2 A q02. (38)

We can determine the twist angle for each section based
on their respective base shear flows such that

θ1 =
1

2 G A

∮
c1

q

t
ds,

=
1

2 G A

[
q01
t

(
1

2
π h

)
+
q01 − q02

t

(
h
)]
,

=
1

2 G A
[(1028.32) q01 − (400) q02] ,

θ2 =
1

2 G A

∮
c2

q

t
ds,

=
1

2 G A

[
q02
t

(
1

2
π h

)
+
q02 − q01

t

(
h
)]
,

=
1

2 G A
[(1028.32) q02 − (400) q01] .

Geometric compatibility however requires these two an-
gles to be equal. We can therefore derive the relationship,

q01 = q02 (39)

Applying this to Equation 38, we can solve for q01 and
q02 such that

q01 = q02 = 0.796 Vz, (40)

where q012 = q01− q02 = 0 represents the base shear flow
in the dividing web. Given these base shear flows, we can
determine the total shear flows through the section such
that

q1 = q′1 + q01 = 0.796 Vz,

q2 = q′2 + q02 = 0.796 Vz,

q12 = q′12 + q012 = −2.5 Vz.

The angle of twist for the section can therefore by deter-
mined as

θ =
1

2 G A

∮
c1

q

t
ds,

=
1

2 G A

[
q1
t

(
1

2
π h

)
+
q12
t

(
h
)]
,

= −(3.98 × 103)
Vz
G
. (41)

PROBLEM 5.15

FIG. 4: 5.15 : Thin-walled, two-cell section showing
representative side cuts and all flexural shear flow

components.

We’re given the two-cell, three-stringer, closed section
shown in Figure 4, where the thickness of the connecting
webs is t = 0.001 m and the area of the stringers is A =
0.001 m2. The shear force, Vz = 5000 N, acts a distance,
y = −0.267 m, from the centroid as shown. The moment
of inertia for the section about the y-axis can be written
as

Iy = 2 (−0.0667)2 A+ (0.1333)2 A = 2.67 × 10−5 m4.
(42)

If we cut the first cell on the diagonal web and the second
cell on the curved web, then we can write the remaining
shear flow components as

q′2 =
Vz
Iy

(−0.0667 A) = −1.25 × 104 N m−1,

q′3 = q′2 +
Vz
Iy

(−0.0667 A) = −2.50 × 104 N m−1.(43)

The torque arising as a result of the applied shear force
may be defined as

T = Vz(−0.267) = −1.33 × 103 N m. (44)

The average area enclosed by each cell is

A1 = 0.0400 m2, (45)

A2 = 0.0157 m2. (46)
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The applied torque may be defined in terms of the base
shear flows through each section, q01 and q02, as

T = 2 A1 q01 + 2 A2 q02. (47)

We can determine the twist angle for each section based
on their respective base shear flows such that

θ1 =
1

2 G A1

∮
c1

q

t
ds,

=
1

2 G A1

[
q01
t

(
0.447 + 0.400

)
+
q01 − q02

t

(
0.200

)]
,

=
1

2 G A1

[(1047) q01 − (200) q02] ,

θ2 =
1

2 G A2

∮
c2

q

t
ds,

=
1

2 G A2

[
q02
t

(
π (0.1)

)
+
q02 − q01

t

(
0.2
)]
,

=
1

2 G A2

[(514.16) q02 − (200) q01] .

Geometric compatibility however requires these two an-
gles to be equal. We can therefore derive the relationship,

(3.89 × 104) q01 = (3.77 × 104) q02. (48)

Applying this to Equation 47, we can solve for q01 and
q02 such that

q01 = 1.187 × 104 N m−1,

q02 = 1.223 × 104 N m−1.

Given these base shear flows, we can determine the total

shear flows through the section such that

q1 = q′1 + q01 = 1.187 × 104 N m−1,

q2 = q′2 + q01 = −6.343 × 102 N m−1,

q3 = q′3 + q01 − q02 = −2.537 × 104 N m−1,

q4 = q′4 + q02 = 1.223 × 104 N m−1.

Given these shear flows, we can determine the location
of the shear center for the cross-section, ysc, through the
relation,

Vz ysc = q1 (0.447) (0.0596) + q2 (0.4) (0.0667)

+q3 (0.2) (0.133) +Q4, (49)

where Q4 is the component of torque resulting from the
shear flow, q4. From the geometry of the section, we can
write this as

Q4 =

∫ π/2

−π/2
q4 (r + 0.133 cos(θ)) r dθ,

= q4 r (π r + 0.267) , (50)

where r = 0.1 m represents the turning radius of the sec-
ond web section. In terms of this radius, we can rewrite
Q4 as

Q4 = 710.35 N m. (51)

Plugging this into Equation 50 and solving for ysc, the
horizontal displacement of the shear center from the cen-
troid (the vertical location once again being equivalent
to that of the centroid due to symmetry), we get

ysc = 0.0666 m. (52)


